
Combined Time Sca ling and Time Shifting 
Consider a  transformation that maps  the  input s ignal x to the  output s ignal 

y as  given by 
 
 

y(t) =  x(at − b ),  
 
 

where  a and b are  real numbers  and a =j 0.  
 

The above transformation can be  shown to be  the  combination of a  

time-scaling operation and time-shifting operation. 

Since  time scaling and time shifting do not commute, we must be  

particularly careful about the  order in which these  transformations  are  

applied. 
 

The above transformation has  two dis tinct but equivalent interpretations: 

1 firs t, time  shifting x by b, and then time  sca ling the  re sult by a; firs t, 

time  sca ling x by a, and then time  shifting the  re sult by b/ a. 2 

Note  that the  time shift is  not by the  same amount in both cases. 
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Combined Time Sca ling and Time Shifting: Example  

Given x(t) as  shown 

below, find x(2t − 1).  
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q(t − 1/ 2) =  x(2(t 1/ 2)  
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Two Perspectives  on Independent-Variable  

Trans format ions  
A transformation of the  independent variable  can be  viewed in terms of 

1 the  e ffect tha t the  transforma tion has  on the  signal; or 

the  e ffect tha t the  transformation has  on the  horizontal axis. 2 

This  dis tinction is  important because  such a  transformation has  opposite 

effects  on the  s ignal and horizontal axis. 

For example, the  (time-shifting) transformation that replaces  t by t − b 

(where  b is  a  real number) in x(t) can be  viewed as  a  transformation that 

1 shifts  the  s igna l x right by b units ; or 

shifts  the  horizonta l axis  left by b units. 2 

In our treatment of independent-variable  transformations, we are  only 

interes ted in the  effect that a  transformation has  on the  signal. 
 

If one is  not careful to consider that we are  interes ted in the s ignal 

perspective  (as  opposed to the  axis  perspective), many aspects  of 

independent-variable  transformations  will not make sense. 

Version: 2016-01-25 



Amplitude  Sca ling Amplitude scaling maps the  input s ignal x to the  output s ignal y as  given 

by 
 

y(t) =  ax(t ),  
 

where  a is  a  real number. 

Geometrically, the  output s ignal y is  expanded/compressed in amplitude  

and/or reflected about the  horizontal axis. 
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Amplitude  Shifting 

Amplitude shifting maps the  input s ignal x to the  output s ignal y as  

given by 
 
 

y(t) =  x(t) +  b, 
 
 

where  b is  a  real number. 
 

Geometrically, amplitude  shifting adds  a  vertical displacement to x. 
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Combined Amplitude  Sca ling and Amplitude  Shifting 
We can also combine  amplitude  scaling and amplitude  shifting 

transformations. 
 

Consider a  transformation that maps  the  input s ignal x to the  output s ignal 

y, as  given by 
 
 

y(t) =  ax(t) +  b, 
 
 

where  a and b are  real numbers. 
 

Equivalently, the  above transformation can be  expressed as  

y(t) =  a 
 
x(t) +  b  

  
.  a 

The above transformation is  equivalent to: 

1 firs t amplitude  sca ling x by a, and then amplitude  shifting the  re sulting 

s igna l by b; or 

firs t amplitude  shifting x by b/ a, and then amplitude  sca ling the  re sulting 

s igna l by a. 

2 
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Section 2.2 
 

 
 
 

Properties  of S ignals  
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Symmet ry and Addition/Multiplica t ion 

Sums involving even and odd functions  have  the  following properties : 

The  sum of two even functions  is  even. 

The  sum of two odd functions  is  odd. 

The  sum of an even function and odd function is  ne ithe r even nor odd, 

provided tha t ne ithe r of the  functions  is  identica lly ze ro. 
 

That is , the  sum of functions  with the  same type of symmetry also has  the  

same type of symmetry. 
 

Products  involving even and odd functions  have  the  following properties : 

The  product of two even functions  is  even. 

The  product of two odd functions  is  even. 

The  product of an even function and an odd function is  odd. 
 

That is , the  product of functions  with the  same type of symmetry is  even, 

while  the  product of functions  with opposite types of symmetry is  odd. 
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Decompos ition of a  S igna l into Even and Odd Parts  

Every function x has  a  unique representation of the  form 
 
 

x(t) =  xe(t) +  xo(t), 
 
 

where  the  functions  xe and xo are  even and odd, respectively. 
 

In particular, the  functions  xe  and xo  are  given by 
 
 

xe(t) =  1 [x(t) +  x(−t)] and xo(t) =  1 [x(t) − x(−t)] . 
2 2 

 

The functions  xe and xo  are  called the  even par t and odd par t of x, 

respectively. 
 

For convenience, the  even and odd parts  of x are  often denoted as  

Even{ x}  and Odd{ x} , respectively. 
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Sum of Periodic Functions  

Sum of periodic  functions . Let x1 and x2 be periodic functions  with 

fundamental periods  T1 and T2, respectively. Then, the  sum y =  x1 +  x2 is  a  

periodic function if and only if the  ra tio T1/ T2  is a rational number (i.e., the  

quotient of two integers). Suppose  that T1/ T2 =  q/ r where  q and r are  

integers  and coprime (i.e., have  no common factors), then the  fundamental 

period of y is  rT1 (or equivalently, qT2, s ince  rT1 =  qT2). (Note  that rT1 is  

s imply the  leas t common multiple  of T1 and T2.) 
 

Although the  above theorem only directly addresses  the  case  of the  sum of 

two functions, the  case  of N functions  (where  N >  2) can be  handled by 

applying the  theorem repeatedly N − 1 times. 
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Right-S ided S igna ls  A signal x is  said to be  r ight sided if, for some (finite) real constant t0, the  

following condition holds : 

x(t) =  0 for a ll t <  t0 

(i.e., x is  only potentially nonzero to the right of t0). 

An example  of a  right-s ided s ignal is  shown below. 
 

 

x(t) 

t 
t0 

A signal x is  said to be  causal if 
 

x(t) =  0 for a ll t <  0. 
 

A causal s ignal is  a  special case of a  right-s ided s ignal. 

A causal s ignal is  not to be  confused with a  causal sys tem. In these  two 

contexts, the  word “causal” has  very different meanings.    
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Left-S ided S igna ls  A signal x is  said to be  left sided if, for some (finite) real constant t0, the  

following condition holds: 

x(t) =  0 for a ll t >  t0 

(i.e., x is  only potentially nonzero to the left of t0). 

An example  of a  left-s ided s ignal is  shown below. 
 

 

x(t) 
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Similarly, a  s ignal x is  said to be  anticausal if 
 

x(t) =  0 for a ll t >  0. 
 

An anticausal s ignal is  a  special case of a  left-s ided s ignal. 

An anticausal s ignal is  not to be  confused with an anticausal sys tem. In 

these  two contexts, the  word “anticausal” has  very different  mea nings.  
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Finite -Dura t ion and Two-S ided S igna ls  A signal that is  both left s ided and right s ided is  said to be  finite duration 

(or time limited). 

An example  of a  finite  duration s ignal is  shown below. 
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A signal that is  neither left s ided nor right s ided is  said to be  two sided. 

An example  of a  two-s ided s ignal is  shown below. 
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Bounded S igna ls  

A signal x is  said to be  bounded if there  exis ts  some (finite) pos itive  real 

constant A such that 

|x(t)| ≤ A for a ll t 
• (i.e., x(t) is  finite for a ll t ).  

• Examples  of bounded s ignals  include  the  s ine  and cosine  functions. 

Examples  of unbounded s ignals  include  the  tan function and any 

• nonconstant polynomial function. 
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Signa l Energy and Power  

The energy E contained in the  s ignal x is  given by 

E =  
{  ∞ 

−∞  
|x(t)|2 dt. 

A signal with finite  energy is  said to be  an energy signal. 

The  average power  P contained in the  s ignal x is  given by 

P =  lim 
T →∞ T 

1 
 { T 

/ 2 
−T / 2 

|x(t)|2 dt. 

A signal with (nonzero) finite  average  power is  said to be  a  power  signal. 
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